GCE AS/A Level - NEW
 2420U10-1420U50-1A
 PHYSICS - Units 1 - 5
 Data Booklet

A clean copy of this booklet should be issued to candidates for their use during each AS/A level Physics examination.

Centres are asked to issue this booklet to candidates at the start of the course to enable them to become familiar with its contents and layout.

Values and Conversions

Avogadro constant
Fundamental electronic charge
Mass of an electron
Molar gas constant
Acceleration due to gravity at sea level
Gravitational field strength at sea level
Universal constant of gravitation
Planck constant
Boltzmann constant
Speed of light in vacuo
Permittivity of free space
Permeability of free space
Stefan constant
Wien constant
Hubble constant

$$
\begin{aligned}
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
R & =8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
g & =9.81 \mathrm{Nkg}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\
h & =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
c & =3.00 \times 10^{8} \mathrm{~ms}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\sigma & =5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\
W & =2.90 \times 10^{-3} \mathrm{mK}^{2} \\
H_{0} & =2.20 \times 10^{-18} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& T / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273.15 \\
& 1 \text { parsec }=3.09 \times 10^{16} \mathrm{~m} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J} \\
& \frac{1}{4 \pi \varepsilon_{0}} \approx 9.0 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}
\end{aligned}
$$

AS

$\rho=\frac{m}{V}$					$I=\frac{\Delta Q}{\Delta t}$
$v=u+a t$					$I=n A v e$
$x=\frac{1}{2}(u+v) t$					$R=\frac{V}{I}$
$x=u t+\frac{1}{2} a t^{2}$					$P=I V=I^{2} R=\frac{V^{2}}{R}$
$v^{2}=u^{2}+2 a x$					$R=\frac{\rho l}{A}$
$\Sigma F=m a$					$V=E-I r$
$p=m v$					$\frac{V}{V_{\text {total }}}\left[\text { or } \frac{V_{\text {ouT }}}{V_{\text {IN }}}\right]=\frac{R}{R_{\text {total }}}$
$W=F x \cos \theta$					$T=\frac{1}{f}$
$\Delta E=m g \Delta h$					$c=f \lambda$
$E=\frac{1}{2} k x^{2}$					$\lambda=\frac{a \Delta y}{D}$
$E=\frac{1}{2} m v^{2}$					$d \sin \theta=n \lambda$
$F x=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$					$n=\frac{c}{v}$
$P=\frac{W}{t}=\frac{\Delta E}{t}$					$n_{1} v_{1}=n_{2} v_{2}$
$\text { efficiency }=\frac{\text { useful energy transfer }}{\text { total energy input }} \times 100 \%$					$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$F=k x$					$n_{1} \sin \theta_{C}=n_{2}$
$\sigma=\frac{F}{A}$					$E_{k \text { max }}=h f-\phi$
$\varepsilon=\frac{\Delta l}{l}$					$p=\frac{h}{\lambda}$
$E=\frac{\sigma}{\varepsilon}$					
$W=\frac{1}{2} F x$					
$\lambda_{\text {max }}=\frac{W}{T}$					
$P=A \sigma T^{4}$					
particle (symbol)	electron (e^{-})	electron neutrino $\left(v_{\mathrm{e}}\right)$	up (u)	down (d)	
charge (e)	-1	0	$+\frac{2}{3}$	- $\frac{1}{3}$	
lepton number	1	1	0	0	

A2

$\omega=\frac{\theta}{t}$	$C=\frac{\varepsilon_{0} A}{d}$
$v=\omega r$	$E=\frac{V}{d}$
$a=\omega^{2} r$	$U=\frac{1}{2} Q V$
$a=\frac{v^{2}}{r}$	$Q=Q_{0}\left(1-e^{-\frac{t}{R C}}\right)$
$F=\frac{m v^{2}}{r}$	$Q=Q_{0} e^{-\frac{t}{R C}}$
$F=m \omega^{2} r$	$F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}}$
$a=-\omega^{2} x$	$F=G \frac{M_{1} M_{2}}{r^{2}}$
$x=A \cos (\omega t+\varepsilon)$	$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
$T=\frac{2 \pi}{\omega}$	$g=\frac{G M}{r^{2}}$
$v=-A \omega \sin (\omega t+\varepsilon)$	$V_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$
$T=2 \pi \sqrt{\frac{m}{k}}$	$P E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r}$
$T=2 \pi \sqrt{\frac{l}{g}}$	$V_{g}=-\frac{G M}{r}$
$p V=n R T$ and $p V=N k T$	$P E=-\frac{G M_{1} M_{2}}{r}$
$p=\frac{1}{3} \rho \overline{c^{2}}=\frac{1}{3} \frac{N}{V} m \overline{c^{2}}$	$W=q \Delta V_{E}$
$M / \mathrm{kg}=\frac{M_{r}}{1000}$	$W=m \Delta V_{g}$
$n=\frac{\text { total mass }}{\text { molar mass }}$	$\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
$k=\frac{R}{N_{A}}$	$v=H_{0} D$
$U=\frac{3}{2} n R T=\frac{3}{2} N k T$	$\rho_{c}=\frac{3 H_{0}{ }^{2}}{8 \pi G}$
$W=p \Delta V$	$r_{1}=\frac{M_{2}}{M_{1}+M_{2}} d$
$\Delta U=Q-W$	$T=2 \pi \sqrt{\frac{d^{3}}{G\left(M_{1}+M_{2}\right)}}$
$Q=m c \Delta \theta$	$A=\lambda N$
$C=\frac{Q}{V}$	$N=N_{0} e^{-\lambda t}$

$A=A_{0} e^{-\lambda t}$	$F=B q v \sin \theta$
$N=\frac{N_{0}}{2^{x}}$	$B=\frac{\mu_{0} I}{2 \pi a}$
$A=\frac{A_{0}}{2^{x}}$	$B=\mu_{0} n I$
$\lambda=\frac{\ln 2}{T_{\frac{1}{2}}}$	$\Phi=A B \cos \theta$
$E=m c^{2}$	flux linkage $=N \Phi$
$F=B I l \sin \theta$	

OPTION A

flux linkage $=B A N \cos \omega t$	$X_{L}=\omega L$
$V=\omega B A N \sin \omega t$	$X_{C}=\frac{1}{\omega C}$
$I_{\text {rms }}=\frac{I_{0}}{\sqrt{2}}$	$Z=\sqrt{X^{2}+R^{2}}$
$V_{\text {rms }}=\frac{V_{0}}{\sqrt{2}}$	$Q=\frac{V_{L}}{V_{R}}\left(=\frac{V_{c}}{V_{R}}\right)$
$V_{\text {rms }}=\frac{\omega B A N}{\sqrt{2}}$	$Q=\frac{\omega_{0} L}{R}$

OPTION B

$I=I_{0} e^{-\mu x}$	$f=42.6 \times 10^{6} B$
$Z=c \rho$	$H=D W_{R}$
$\frac{\Delta f}{f_{0}}=\frac{2 v}{c} \cos \theta$	$E=H W_{T}$

OPTION C

$F t=m v-m u$	$\tau=I \alpha$
$e=\frac{\text { Relative speed after collision }}{\text { Relative speed before collision }}$	$L=I \omega$
$e=\sqrt{\frac{h}{H}}$	$K E=\frac{1}{2} I \omega^{2}$
$I=\frac{2}{5} m r^{2}$	$p=p_{0}-\frac{1}{2} \rho v^{2}$
$I=\frac{2}{3} m r^{2}$	$F_{D}=\frac{1}{2} \rho v^{2} A C_{D}$
$\alpha=\frac{\omega_{2}-\omega_{1}}{t}$	

OPTION D

$I=\frac{P}{A}$	$\frac{\Delta Q}{\Delta t}=-A K \frac{\Delta \theta}{\Delta x}$
$E=\frac{1}{2} A \rho v^{3}$	$P=U A \Delta \theta$

Mathematical Information

SI multipliers

Multiple	Prefix	Symbol
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zetta	Z

Areas and Volumes

Area of a circle $=\pi r^{2}=\frac{\pi d^{2}}{4}$
Area of a triangle $=\frac{1}{2}$ base \times height

Solid	Surface area	Volume
rectangular block	$2(l h+h b+l b)$	$l b h$
cylinder	$2 \pi r(r+h)$	$\pi r^{2} h$
sphere	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$

Trigonometry

$$
\sin \theta=\frac{\mathrm{PQ}}{\mathrm{PR}}, \quad \cos \theta=\frac{\mathrm{QR}}{\mathrm{PR}}, \quad \tan \theta=\frac{\mathrm{PQ}}{\mathrm{QR}}, \quad \frac{\sin \theta}{\cos \theta}=\tan \theta
$$

$$
P R^{2}=P Q^{2}+Q R^{2}
$$

Logarithms (A2 only)

[Unless otherwise specified 'log' can be $\log _{\mathrm{e}}$ (i.e. \ln) or $\log _{10}$.]
$\log (a b)=\log a+\log b$

$$
\log \left(\frac{a}{b}\right)=\log a-\log b
$$

$\log x^{n}=n \log x$

$$
\log _{\mathrm{e}} e^{k x}=\ln e^{k x}=k x
$$

BLANK PAGE

